一:hashMap底层实现原理和常见的面试题

2020-04-28 443 ℃

基础

概述

HashMap基于Map接口实现,元素以键值对的方式存储,并且允许使用null键和null值,因为key不允许重复,因此只能有一个键为null,另外HashMap不能保证放入元素的顺序,它是无序的,和放入的顺序并不能相同。HashMap是线程不安全的。

继承关系

public class HashMap<K,V>extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable

基本属性

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //默认初始化大小 16 static final float DEFAULT_LOAD_FACTOR = 0.75f; //负载因子0.75 static final Entry<?,?>[] EMPTY_TABLE = {}; //初始化的默认数组 transient int size; //HashMap中元素的数量 int threshold; //判断是否需要调整HashMap的容量

Note:HashMap的扩容操作是一项很耗时的任务,所以如果能估算Map的容量,最好给它一个默认初始值,避免进行多次扩容。HashMap的线程是不安全的,多线程环境中推荐是ConcurrentHashMap。

常被问到的HashMap和Hashtable的区别

1.线程安全

两者最主要的区别在于Hashtable是线程安全,而HashMap则非线程安全。

Hashtable的实现方法里面都添加了synchronized关键字来确保线程同步,因此相对而言HashMap性能会高一些,我们平时使用时若无特殊需求建议使用HashMap,在多线程环境下若使用HashMap需要使用Collections.synchronizedMap()方法来获取一个线程安全的集合。

Note: Collections.synchronizedMap()实现原理是Collections定义了一个SynchronizedMap的内部类,这个类实现了Map接口,在调用方法时使用synchronized来保证线程同步,当然了实际上操作的还是我们传入的HashMap实例,简单的说就是Collections.synchronizedMap()方法帮我们在操作HashMap时自动添加了synchronized来实现线程同步,类似的其它Collections.synchronizedXX方法也是类似原理。

针对null的不同

HashMap可以使用null作为key,而Hashtable则不允许null作为key
虽说HashMap支持null值作为key,不过建议还是尽量避免这样使用,因为一旦不小心使用了,若因此引发一些问题,排查起来很是费事。

Note:HashMap以null作为key时,总是存储在table数组的第一个节点上。

继承结构

HashMap是对Map接口的实现,HashTable实现了Map接口和Dictionary抽象类。

初始容量与扩容

HashMap的初始容量为16,Hashtable初始容量为11,两者的填充因子默认都是0.75。

HashMap扩容时是当前容量翻倍即:capacity2,Hashtable扩容时是容量翻倍+1即:capacity2+1。

两者计算hash的方法不同

int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length;

HashMap计算hash对key的hashcode进行了二次hash,以获得更好的散列值,然后对table数组长度取摸。

int hash = hash(key.hashCode()); int i = indexFor(hash, table.length); static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } static int indexFor(int h, int length) { return h & (length-1);

底层实现原理

哈希表结构的优势?

哈希表作为一种优秀数据结构
本质上存储结构是一个数组,辅以链表和红黑树
数组结构在查询和插入删除复杂度方面分别为O(1)和O(n)
链表结构在查询和插入删除复杂度方面分别为O(n)和O(1)
二叉树做了平衡 两者都为O(lgn)
而哈希表两者都为O(1)

哈希算法?

h 通过hash算法计算得到的的一个整型数值 
h可以近似看做一个由key的hashcode生成的随机数,区别在于相同的hashcode生成的h必然相同
而不同的hashcode也可能生成相同h,这种情况叫做hash碰撞,好的hash算法应尽量避免hash碰撞
(ps:hash碰撞只能尽量避免,而无法杜绝,由于h是一个固定长度整型数据,原则上只要有足够多的输入,就一定会产生碰撞)
关于hash算法有很多种,这里不展开赘述,只需要记住h是一个由hashcode产生的伪随机数即可
同时需要满足key.hashcode -> h 分布尽量均匀(下文会解释为何需要分布均匀)
可以参考https://blog.csdn.net/tanggao1314/article/details/51457585

JDK1.8中对HashMap做了哪些改动?

  • 默认初始化容量=0
  • 引入红黑树,优化数据结构
  • 将链表头插法改为尾插法,解决1.7中多线程循环链表的bug
  • 优化hash算法
  • resize计算索引位置的算法改进
  • 先插入后扩容

JDK1.8后的储存结构

HashMap由数组和链表来实现对数据的存储
HashMap采用Entry数组来存储key-value对,每一个键值对组成了一个Entry实体,Entry类实际上是一个单向的链表结构,它具有Next指针,可以连接下一个Entry实体,以此来解决Hash冲突的问题。

数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;

链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。
image.png
image.png
image.png
从上图我们可以发现数据结构由数组+链表组成,一个长度为16的数组中,每个元素存储的是一个链表的头结点。那么这些元素是按照什么样的规则存储到数组中呢。一般情况是通过hash(key.hashCode())%len获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。

HashMap里面实现一个静态内部类Entry,其重要的属性有 hash,key,value,next。

HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了

JDK1.8之后的变化

在Jdk1.8中HashMap的实现方式做了一些改变,但是基本思想还是没有变得,只是在一些地方做了优化,下面来看一下这些改变的地方,数据结构的存储由数组+链表的方式,变化为数组+链表+红黑树的存储方式,当链表长度超过阈值(8)时,将链表转换为红黑树。在性能上进一步得到提升。
image.png

HashMap中put()的过程

image.png

源码如下:

public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // 判断数组是否为空,长度是否为0,是则进行扩容数组初始化 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 通过hash算法找到数组下标得到数组元素,为空则新建 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; // 找到数组元素,hash相等同时key相等,则直接覆盖 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 该数组元素在链表长度>8后形成红黑树结构的对象,p为树结构已存在的对象 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { // 该数组元素hash相等,key不等,同时链表长度<8.进行遍历寻找元素,有就覆盖无则新建 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { // 新建链表中数据元素,尾插法 p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st // 链表长度>=8 结构转为 红黑树 treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } // 新值覆盖旧值 if (e != null) { // existing mapping for key V oldValue = e.value; // onlyIfAbsent默认false if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; // 判断是否需要扩容 if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }

基本过程如下:

  • 1.检查数组是否为空,执行resize()扩充;在实例化HashMap时,并不会进行初始化数组)

  • 2.通过hash值计算数组索引,获取该索引位的首节点。

  • 3.如果首节点为null(没发生碰撞),则创建新的数组元素,直接添加节点到该索引位(bucket)。

  • 4.如果首节点不为null(发生碰撞),那么有3种情况

    • ① key和首节点的key相同,覆盖old value(保证key的唯一性);否则执行②或③

    • ② 如果首节点是红黑树节点(TreeNode),将键值对添加到红黑树。

    • ③ 如果首节点是链表,进行遍历寻找元素,有就覆盖无则新建,将键值对添加到链表。添加之后会判断链表长度是否到达TREEIFY_THRESHOLD - 1这个阈值,“尝试”将链表转换成红黑树。

  • 5.最后判断当前元素个数是否大于threshold,扩充数组。

HashMap中get()过程

public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 永远检查第一个node if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { if (first instanceof TreeNode) // 树查找 return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && // 遍历链表 ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }

在Hashmap1.8中,无论是存元素还是取元素,都是优先判断bucket上第一个元素是否匹配,而在1.7中则是直接遍历查找。

基本过程如下:

  • 1.根据key计算hash;
  • 2.检查数组是否为空,为空返回null;
  • 3.根据hash计算bucket位置,如果bucket第一个元素是目标元素,直接返回。否则执行4;
  • 4.如果bucket上元素大于1并且是树结构,则执行树查找。否则执行5;
  • 5.如果是链表结构,则遍历寻找目标

HashMap中resize()过程

final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { // 如果已达到最大容量不在扩容 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 通过位运算扩容到原来的两倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } // 新的扩容临界值 threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; // 如果该位置元素没有next节点,将该元素放入新数组 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) // 树节点 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order // 链表节点。 // lo串的新索引位置与原先相同 Node<K,V> loHead = null, loTail = null; // hi串的新索引位置为[原先位置j+oldCap] Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; // 原索引,oldCap是2的n次方,二进制表示只有一个1,其余是0 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else // 尾插法 loTail.next = e; loTail = e; } // 原索引+oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 根据hash判断该bucket上的整个链表的index还是旧数组的index,还是index+oldCap if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }

JDK1.8版本中扩容相对复杂。在1.7版本中,重新根据hash计算索引位置即可;而在1.8版本中分2种情况,下边用图例来解释。
image.png
image.png


部分内容转自:https://blog.csdn.net/qq_41345773/java/article/details/92066554
部分内容转自:
https://segmentfault.com/a/1190000021928659

版权声明:冰雨stack原创文章,转载请注明出处。

发表时间:2020-04-28 20:25

最后更新时间:2020-04-28 21:06